Files
GitMining/FrequentPatterns.hs
2015-04-08 13:39:59 +00:00

46 lines
1.9 KiB
Haskell

module FrequentPatterns (
frequentPatterns
) where
import DataModel
import qualified Data.Set as Set
import Debug.Trace (trace)
import qualified Data.List as List
import Control.Parallel.Strategies(parMap, rpar)
semiUnion :: ItemSet -> ItemSet -> ItemSet
semiUnion (ItemSet set1) (ItemSet set2) = ItemSet $
if max1 <= max2 && Set.delete max1 set1 == Set.delete max2 set2
then set1 `Set.union` set2
else Set.empty
where
max1 = Set.findMax set1
max2 = Set.findMax set2
-- generate all possible combinations from a set of singletons
-- generateLevels :: [Item] -> [[ItemSet]]
-- generateLevels singles = until (\x -> head x == lastLevel) (\x -> generateNextLevel (head x) : x) [firstLevel] where
-- firstLevel = map (\x -> ItemSet $ Set.fromList [x]) singles
-- lastLevel = [ItemSet $ Set.fromList singles]
-- generate the next level in a bottom-up route
generateNextLevel :: [ItemSet] -> [ItemSet]
generateNextLevel level = trace ("Computing level " ++ show (isSize (head level))) $
foldr (\value old -> generate value ++ old) [] level
where
generate value = takeWhile (/= empty) $
parMap rpar (semiUnion value) (tail $ List.dropWhile (/= value) level) -- FIXME: this could be a better strategy
isSize (ItemSet set) = Set.size set
singletons :: [ItemSet] -> [Item]
singletons table = Set.toList $ foldr union (Set.fromList []) table
where
union (ItemSet row) old = old `Set.union` row
frequentPatterns :: Frequency -> [ItemSet] -> [[ItemSet]]
frequentPatterns thresh table = until (\x -> [] == head x)
(\x -> filterByFrequency (generateNextLevel (head x)) : x) [firstLevel]
where
firstLevel = filterByFrequency $ map (\x -> ItemSet $ Set.fromList [x]) $
trace "Generated Singletons" (singletons table)
filterByFrequency = filter (\x -> frequency table x >= thresh)